
Dr Louise Brown

Computer Engineering
and Mechatronics

MMME3085

Part 3

Software Engineering Best Practice

The tools used for code development

Having decided on the low level design we are in a position to start writing some
code.

We need to think about:

▪ The tools that we use to make the coding process more straightforward and
robust

▪ What editor or development environment will be used?

▪ How do we create build files (important once a project has more files)?

▪ How do we find bugs?

▪ The practise of writing good code

▪ There may be some overlap between the two (e.g. using a debug
environment combined with coding techniques to identify bugs)

▪ How will we keep a track of changes to the code, particularly if being
developed by a group

▪ How do we keep the code safe in the event of a system crash?

▪ How do we share code with our fellow developers?

The practise of writing good code

Superior coding techniques and programming practices
are hallmarks of a professional programmer.

The bulk of programming consists of making a large
number of small choices while attempting to solve a
larger set of problems.

How wisely those choices are made depends largely upon
the programmer's skill and expertise. 1

1 https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx

https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx

5

The Practise of Writing Good Code: Functions

Where possible use a title which describes what both what
the function does and an object
• PrintDocument()
• CalcPenPosition()
• CalcStartPosition()

Try to keep a function for one purpose only. For example don’t write a
function to calculate some variables and then plot them. Create two
functions – you may also want to do the calculations without plotting
and a general purpose plot function is more likely to be reused.

If you find yourself repeating a very similar piece of code around your
program it should probably be a function

Where possible, limit the number of parameters passed. Make
sure all parameters are used.

The Practise of Writing Good Code

Even though we’ve selected an IDE and designed code to the level of

function definitions there is another step before actually writing the code:

Pseudocode - a plain language description of how an algorithm, function,

class or program will work.

• Describe specific operations using English-like statements

• Do not use syntax from the final programming language

• Write at the level of intent. Describe the meaning rather than how it will be

done

• If the pseudocode is written in the IDE as comments these will stay in

your code

• Write at a low enough level that generating the code will be almost

automatic. It may be an iterative process.

Example Pseudocode

ReadShape(fileHandle, ShapeData)
{
 read shape name from file
 read number of strokes from file

 allocate memory for number of pen strokes
 if failed to allocate memory
 return false
 endif
 for each stroke in file
 read x coord into ShapeData penStroke array
 read y coord into ShapeData penStroke array
 read pen up/down into ShapeData penStroke array
 end loop

return true
}

Best Practice – a guide

• As you start to develop code that will be both shared and that will ‘grow’
over time it is important that you start to adopt some best practices

• Often companies will have their own ‘house’ style

• For example, how to align the brackets when ‘blocking’ code for an
loop/condition etc.

• This best practice guide produced by Microsoft is a few years old but still
provides examples of very good practice:

• https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx

• Another, more general guide is given here:

• https://mitcommlab.mit.edu/broad/commkit/coding-and-comment-
style/

• Links at the end of the page give style guides for specific languages.

https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx
https://mitcommlab.mit.edu/broad/commkit/coding-and-comment-style/
https://mitcommlab.mit.edu/broad/commkit/coding-and-comment-style/

The tools used for code development

Having decided on the low level design we are in a position to start writing some
code.

We need to think about:

▪ The tools that we use to make the coding process more straightforward and
robust

▪ What editor or development environment will be used?

▪ How do we create build files (important once a project has more files)?

▪ How do we find bugs?

▪ The practise of writing good code

▪ There may be some overlap between the two (e.g. using a debug
environment combined with coding techniques to identify bugs)

▪ How will we keep a track of changes to the code, particularly if being
developed by a group

▪ How do we keep the code safe in the event of a system crash?

▪ How do we share code with our fellow developers?

Debugging

“Everyone knows that debugging is twice as hard as writing

a program in the first place. So if you're as clever as you

can be when you write it, how will you ever debug it?”

 - Brian Kernighan

“Software quality must be built in from the start. The best way to

build a quality product is to develop requirements carefully, design

well, and use high-quality coding practices. Debugging is a last

resort”
McConnell, S. (2004). Code Complete, Microsoft Press.

Debugging

How not to debug!

• By guessing:

• Scatter code with print statements

• Randomly change things until it works

• Don’t back up original version

• Don’t keep notes

• By not spending time understanding the problem

• Fixing the problem with a workaround

• Make a special case to deal with the error

13

Debugging tools

Source-code comparators

• Diff, WinDiff or git diff to see what has changed from the last working version

Compiler warning messages

• Set the compiler to the highest warning level

• Uninitialised variables, pointers etc often cause problems

• Some compilers allow warnings to be treated as errors

Lint utility and static code analysis tools

• Check for code issues

Symbolic debugger

• Part of the IDE

• Use to step through code to see exactly what the code is doing

• It won’t solve the problem for you – it will help you to find it

• Great for understanding someone else’s code

• Set breakpoints to home in on a particular part of the code

The tools used for code development

Having decided on the low level design we are in a position to start writing some
code.

We need to think about:

▪ The tools that we use to make the coding process more straightforward and
robust

▪ What editor or development environment will be used?

▪ How do we create build files (important once a project has more files)?

▪ How do we find bugs?

▪ The practise of writing good code

▪ There may be some overlap between the two (e.g. using a debug
environment combined with coding techniques to identify bugs)

▪ How will we keep a track of changes to the code, particularly if being
developed by a group

▪ How do we keep the code safe in the event of a system crash?

▪ How do we share code with our fellow developers?

Git Revisited

▪ git: To keep our code ‘safe’
▪ A free version control system

▪ It allows us to keep version of the code so we can ‘go back’

▪ We can ‘branch’ code to try things

▪ Share code with others who can then ‘check in’ code when they have finished with it

▪ https://git-scm.com/downloads

https://git-scm.com/downloads

Local git workflow

1

2 3

4

5

6 7

8

9

10

T1 T2

Trunk

Branch

Tag

Discontinued
branch

• Distributed system – have own version of the repository on local computer
• Using a remote repository gives backup and easier sharing between

developers
• Integrated into some IDEs eg VSCode, Visual Studio and Matlab
• Easy use of branches for experimental code development

Git workflow

Useful git blogs

▪Using VSCode and Git – useful blog

▪https://kbroman.org/github_tutorial/pages/init.html -
introduction to starting a new repository using the
command line

https://www.gitkraken.com/blog/vs-code-git
https://kbroman.org/github_tutorial/pages/init.html
https://kbroman.org/github_tutorial/pages/init.html

Documenting

In software there are many places we undertake documentation:

• The design stage of the code

• Documentation within the code
• Which is more than just the odd comment!

• Documentation on how to use the software once written

Code IS documentation!

Your code is ultimately the best documentation!

What we write about the code is generally an approximation to the
code itself, provided for those who:

• Don’t know the code (someone else wrote it)
• Don’t have time to read the code (it’s too complex)
• Don’t want to read the code (who wants to read code to understand

what’s going on??)
• Don’t have access to the code (although they could still decompile it)

For everyone else the code is what they are working on, so make
life easy for them

• And yourself if you ever need to go back to the code!

Perform documentation when and as required (e.g. %10 of total production time)

No documentation is never a good solution!

• nor is excessive documentation!

Documentation can include

• code documentation,

• requirement specifications,

• design documents,

• test documents,

• user manuals etc.

▪ Documents, like code, need to be managed (and shared) – consider using version
controlling tools and/or web-based platforms

Code documentation

Code documentation is important!

Good programming style goes a long way to creating self-
documenting code.

• Use meaningful variable and function names

• Use named constants instead of ‘magic numbers’

• Use clear formatting

• Keep flow control and data structure simple

Then… use comments!

Commenting Code

Kinds of comments1:
• Repeat of the code

• Adds no value – avoid
• Explanation of the code

• Used to explain complicated piece of code
• May be better to improve the code!

• Marker in the code
• // **** TODO: Fix before release!
• A standard system may help to identify work to be done
• Shouldn’t be left in the code!

• Summary of the code
• Distills a few lines of code into one or two sentences
• Useful if trying to scan code quickly

• Description of the code’s intent
• Purpose of the code, e.g. // get current employee information

• Information that cannot be expressed by the code itself
• Copyright notices, confidentiality notices, version numbers, references etc

1McConnell, S. (2004). Code Complete, Microsoft Press.

Self-documenting code

Code documentation is important!

The best way of doing this is producing self-documenting code
(this goes back to the ideas of best practice).

Tools can be used to take comments from the code and
automatically generate code documentation.

• Doxygen for C/C++ www.doxygen.org

• Sphynx for Python https://www.sphinx-doc.org

http://www.doxygen.org/
https://www.sphinx-doc.org/

The best comment is perhaps

Always code as if the person who ends up maintaining your code

is a violent psychopath who knows where you live.

Testing

Never assume that just because your code
runs that it’s given you the right answers!

• Test with a small set of data where you know what the results should be. Make sure
that your program doesn’t crash when you give it invalid data.

• Use defensive programming
• Test validity of variables at start of functions
• Test validity of results returned from functions
• Use assertions1

• Use a unit testing library
• Built into many IDE’s

1Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. (2014) Best Practices for Scientific Computing.
PLoS Biol 12(1): e1001745. doi:10.1371/journal.pbio.1001745

Use Assertions

27

2Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. (2014) Best Practices for Scientific Computing.
PLoS Biol 12(1): e1001745. doi:10.1371/journal.pbio.1001745

Use error-handling for conditions you expect to occur;
use assertions for conditions that should never occur1

An assertion is simply a statement that something holds true at a particular point in a program2

• Typically used to check values of inputs in functions
• May help to identify if an error has crept into code during development

Generally disabled for release versions
• Do not put anything in the assertion which changes the state of the code

• e.g. Don’t use assert(x = 5)

Assertions can be removed at compile time using the preprocessor NDEBUG

Appendix1/Assertions.c, DebugAssertion.c

Unit Testing Library

Programs are available which provide testing frameworks. Typically a unit test is written
for each function in a program.

When new features are added or changes are made to code, the tests can be rerun to
make sure that everything still works as it should.

Test Driven Development (TDD) specifies how each unit should work and the test is
written before the actual code.

CppUnit is a unit testing framework for C++ https://en.wikipedia.org/wiki/CppUnit

https://freedesktop.org/wiki/Software/cppunit/

C Unity Test Explorer for VSCode:
https://marketplace.visualstudio.com/items?itemName=fpopescu.vscode-unity-test-adapter

https://en.wikipedia.org/wiki/CppUnit
https://freedesktop.org/wiki/Software/cppunit/
https://marketplace.visualstudio.com/items?itemName=fpopescu.vscode-unity-test-adapter

A few dates and times

Computer Lab: 11am-1pm Tuesday Coates C19 until
12th December.

Monday : 1-2.45pm Chemistry C15 drop-in

Robot testing: 6th, 8th and 13th December. Sign-up
sheet to follow.

Project submission: 3pm Thursday 14th December

Going for Speed

Appendix 1

Code optimisation

Going for speed
• Just use a faster PC?

General concepts of code optimisation
• Particular examples in C

• Lookup tables (all languages)

Speeding up Code

Arrays
•Say you wanted to assign a particular character based
on a value…

•Method 1 switch (queue)
{
 case 0 : letter = 'W';
 break;
 case 1 : letter = 'S';
 break;
 case 2 : letter = 'U';
 break;
}

if (queue == 0)
 letter = 'W';
else if (queue == 1)
 letter = 'S';
else
 letter = 'U';

Arrays
•Say you wanted to assign a particular character based
on a value…

•Method 2

Arrays
•Say you wanted to assign a particular character based
on a value…

◦The best & quickest method

static char *classes = "WSU";
letter = classes[queue];

Registers (1)

Use the "register" declaration whenever you can, eg.

register float val;

register double dval

register double dval

This is only a hint to the compiler, and many will do this anyway

• NB: You cannot take the address of a register

Registers (2)

Note: you cannot take the address of a
register variable

• So no pointers for these ☺

This will fail!

int main()
{
register int i = 10;
int *a = &i;
printf("%d", *a);
return 0;

}

Integers (1)

Use integers wherever possible

Use unsigned integers if you know the value will never go negative

• Many compilers handle unsigned integer mathematics much faster
than signed

So the ideal definition would be:

register unsigned int var_name;

Integers (2)

Remember

• integer operations are much faster as they can be done on the CPU,
rather than on a floating point processor or by external libraries

If you only need 2dp accuracy,

• multiply everything by 100 and use integers, converting back to
floating point at the last moment

Loop Jamming

NEVER use two loops when one will suffice

NO!

for(i=0; i<100; i++)
{

stuff();
}

for(i=0; i<100; i++)
{

morestuff();
}

YES

for(i=0; i<100; i++)
{

stuff();
 morestuff();
}

Unrolling loops can make a huge difference in speed

Is much less efficient than

As the code has to keep check the value of i

for(i=0; i<3; i++)
{
 something(i);
}

something(0);
something(1);
something(2);

But for large loops…

It would clearly be impractical to do this for huge loops, or where the
upper limit is not known at design time

We can get a speed up though by using Code Blocking

Code Blocking

We define a block size and unroll the code into blocks of this
size

We then handle any leftovers in a final statement

It works as the processor can get on with processing data,
rather than examining loop counters

An example (part 1)

#include<stdio.h>

#define BLOCKSIZE (8)

int main(void)
{

int i = 0;
int limit = 33; /* could be anything */
int blocklimit;

/* The limit may not be divisible by BLOCKSIZE,
* go as near as we can first, then tidy up.
*/

blocklimit = (limit / BLOCKSIZE) * BLOCKSIZE;

An example (part 2)

/* unroll the loop in blocks of 8 */
while(i < blocklimit)
{

printf("process(%d)\n", i);
printf("process(%d)\n", i+1);
printf("process(%d)\n", i+2);
printf("process(%d)\n", i+3);
printf("process(%d)\n", i+4);
printf("process(%d)\n", i+5);
printf("process(%d)\n", i+6);
printf("process(%d)\n", i+7);

/* update the counter */
i += 8;

}

An example (part 3)

if(i < limit)
{

/* Jump into the case at the place that will allow
* us to finish off the appropriate number of items. */

 switch(limit - i)
{

case 7 : printf("process(%d)\n", i); i++;
case 6 : printf("process(%d)\n", i); i++;
case 5 : printf("process(%d)\n", i); i++;
case 4 : printf("process(%d)\n", i); i++;
case 3 : printf("process(%d)\n", i); i++;
case 2 : printf("process(%d)\n", i); i++;
case 1 : printf("process(%d)\n", i);

}
}

NB: we could use a for loop, but this is yet faster!

Loops

Normally to loop, we would have (say)

for(i=0; i<10; i++) { ... }

Giving 0,1,2,3,4,5,6,7,8,9

If counting backwards is not a problem, do it - it is faster,

 for (i=9; i>= 0; i--) { ... }

Loops for(i=10; i>0; i-- ;){}

This works as it is faster to process i-- as the test condition
• it says is i==0 ?, if not decrement by 1 and loop

In the original case the compiler had to:
• Subtract i from 10
• Test if the result is non zero ?
• If so, increment i and loop

Use switch instead of if (1)

For large decisions involving

if...else if ...else..., like this:

if(val == 1)
dostuff1();

else if (val == 2)
dostuff2();

else if (val == 3)
dostuff3();

Use switch instead of if (2)

It may be faster to use a switch

if(val == 1)
dostuff1();

else if (val == 2)
dostuff2();

else if (val == 3)
dostuff3();

switch(val)
{

case 1: dostuff1();
break;

case 2: dostuff2();
break;

case 3: dostuff3();
break;

}

In the if() statement, if the last case is required, all the previous ones will be tested first.

The switch lets us cut out this extra work.

If you have to use a big if / else if / else if .. statement, test the most likely cases first.

If you know which cases are more likely to be true put these cases first

Early loop breaking

Often it is not necessary to process for the entirety of a loop

Such a case might be where one is testing for the presence of a particular value in
an array

A solution is to break out the loop as soon as you have what you need

Loop breaking (1)

Consider the case of looking to see if the number 99 is in a list of numbers

found = FALSE;
for(i=0;i<10000;i++)
{

if(list[i] == 99)
{

found = TRUE;
}

}
if(found)
 printf("Yes, there is a 99. Hooray!\n");

Even if ’99’ was the first element, it would check all 10,000!

Loop breaking (2)

found = FALSE;
for(i=0;i<10000;i++)
{

if(list[i] == 99)
{

found = TRUE;
 break;

}
}
if(found)
 printf("Yes, there is a 99. Hooray!\n");

This will break out from the loop as soon as ’99’ is found

Some miscellaneous ones (1)

Avoid the use of recursion.

• Recursion can be very elegant and neat, but creates many more
function calls which can become a large overhead

Avoid the square root function sqrt() in loops

• calculating square roots is very CPU intensive

Avoid functions such as pow() when a simple arithmetic function can
be used

Some miscellaneous ones (2)

Floating point multiplication is often faster than division
• use val * 0.5

• instead of val / 2.0

Addition is quicker than multiplication
• use val + val + val

• instead of val * 3

Some miscellaneous ones (3)

Single dimension arrays are faster than multi-dimensioned arrays

• We can make a 2D array into a 1D array (this is in effect the case
with the memory anyhow).

• All we need is to be able to convert [x][y] to a single [x] value

It is quite easy ☺

Consider
int x[5][20]

int y[100]

We can access say [4][7] as
x[4][7]

or
y[87] {4*20 + 7 }

0 20 40 60 80 87

And of course

Remember to turn optimisation on in the
compiler settings!

Lookup Tables – an example

This is a common optimisation in numerical processing

• We define an array and pre-populate it with values we will be
making repeated use of

• Whilst the initial creation of the array will take time, the speed up is
well worth it

Consider the following case

We have a calculation that needs the sine of an

integer angle in degrees

Method 1:

calculate sine values during calculation

Method 2:

Create lookup table first, then perform the

calculations referencing the lookup table

Comparison of Speed

0

50

100

150

200

250

300

0
.E

+
0
0

5
.E

+
0
3

1
.E

+
0
4

2
.E

+
0
4

2
.E

+
0
4

3
.E

+
0
4

3
.E

+
0
4

4
.E

+
0
4

4
.E

+
0
4

5
.E

+
0
4

5
.E

+
0
4

6
.E

+
0
4

6
.E

+
0
4

7
.E

+
0
4

8
.E

+
0
4

8
.E

+
0
4

9
.E

+
0
4

9
.E

+
0
4

1
.E

+
0
5

Itterations

C
P

U
 T

im
e

Lookup Direct

All About Numbers (not in the book)

Appendix 2

Numbers

On a computer, the basic building block for a number is the BYTE

• 8 bits

• Can range from 00000000 to 11111111

• Can be signed or unsigned

Numbers – byte sizes

Each variable is made up of a number of bytes, and this defines the
range of numbers possible.

We can obtain the size using the sizeof function in C

Some machines will have the same size for variables that on other
machines will be different (especially short int)

Numbers - range

The number of bytes used defines (in the case of integer types) the range of
numbers that can be stored:

• 2 Byte (16 bits) has the range
• 0 to (216 – 1) or 0 to 65535 (unsigned)
or
• (0 – 215) to (215 –1) or -32768 to 32767 (signed)

Numbers - limits

The limits of a variable are machine specific (with the possible exception
of char) as they depend on the number of bytes used for storage

With each machine/compiler is shipped a file ‘limits.h’ which has the
permissible range

Decimal numbers

1056.2458

What is this called?

What do these numbers represent?

What are their values?

Fixed point numbers (1)

A method of representing fractions using binary numbers

Fixed point representation of fractions:

• In a fixed point representation, the binary point is understood to
always be in the same position. The bits to the left represent the
integer part and the bits to the right represent the fraction part :

• The integer parts go as 2n (1,2,4,8 etc)

• The fraction parts go as 2-n (0.5, 0.25, 0.125 etc) . The overall
value is formed using a sum of these.

Fixed point numbers (2)

Example:

A fixed point system uses 8-bit numbers. 4

bits for the integer part and 4 bits for the

fraction:

What number is represented by 00101100?

Fixed point numbers (3)

Example:

A fixed point system uses 8-bit numbers. 4 bits for the integer part

and 4 bits for the fraction:

What number is represented by 00101100?

8 4 2 1 0.5 0.25 0.125 0.0625

0 0 1 0 1 1 0 0

Fixed point numbers (4)

Example:

A fixed point system uses 8-bit numbers. 4 bits for the integer part

and 4 bits for the fraction:

What number is represented by 00101100?

8 4 2 1 0.5 0.25 0.125 0.0625

0 0 1 0 1 1 0 0

NOTE : The headings for the fraction part are divided by 2 successively to the right...

 The number 00101100 represents the number 2.75.

Fixed point numbers (5)

Example:

 Converting to Fixed Point – there is an easy way !

EG. 56.78125

Stage 1 : Integer part: easy

Sign 64 32 16 8 4 2 1

0 0 1 1 1 0 0 0

Fixed Point Numbers (56.78125)

Example: - fraction part

0 . 7 8 1 2 5
x 2

(1) . 5 6 2 5 0

x 2

(1) . 1 2 5 0 0

x 2

(0) . 2 5 0 0 0

x 2
(0) . 5 0 0 0 0

x 2
(1) . 0 0 0 0 0

You keep multiplying,

ignoring the value in

brackets until you get

zero or run out of bits to

use

So reading down we get

11001

So final answer is

00111000 11001000

Fixed Point Numbers - Example

Your Turn :

Convert the value 25.3 to a fixed point representation,

 8 bit mantissa, 8 bit exponential

Fixed Point Numbers – Solution (1)

Example: - integer part

0 0011001
s 25

Fixed Point Numbers – Solution (2)

Example: - fraction part

0 . 3 0

(0) . 6 0

(1) . 2 0

(0) . 4 0

(0) . 8 0

(1) . 6 0

(1) . 2 0

(0) . 4 0

(0) . 8 0

Fixed Point Numbers – Solution (3)

Example: - fraction part

0 . 3 0

(0) . 6 0 0.5

(1) . 2 0 0.25

(0) . 4 0 0.125

(0) . 8 0 0.0625

(1) . 6 0 0.03125

(1) . 2 0 0.015625

(0) . 4 0 0.0078125

(0) . 8 0 0.00390625

01001100

= 0.25 + 0.03125 + 0.015625

= 0.296575

Not exactly 0.3!

Answer: 0 0011001 01001100

 s 25 . 3

Limitations of fixed point representation

Fixed window limits representation of both very large and very
small numbers

Prone to loss of precision when two large numbers are divided.

Scientific notation

Most common solution is to use scientific notation with a base and
exponent:

▪123.456 -> 1.23456 x 102 in decimal

▪789.abc -> 7.89abc x 162 in hex

▪1010.110 -> 1.010110 x 23 in binary

▪Giving a sliding scale of precision to maximise
precision for both very large and very small numbers

Floating Point Numbers

These are held using the IEEE 754 Floating Point Model which has 3
components:

• Sign of mantissa – 0 for positive number, 1 for negative

• Biased exponent – addition of a bias enables both positive and
negative exponents to be represented

• Normalised mantissa – part of number in scientific notation giving the
significant digits. In binary this must be 0 or 1 so a normalised
mantissa has 1 to the left of the decimal

• These may be single or double precision

Single and Double Precision Floating Point Numbers

https://www.geeksforgeeks.org/ieee-standard-754-floating-point-numbers/

Bias = 127

Bias = 1023

https://www.geeksforgeeks.org/ieee-standard-754-floating-point-numbers/

In summary

1. The sign bit is 0 for positive, 1 for negative.

2. The exponent base is two.

3. The exponent field contains 127 plus the true exponent for
single-precision, or 1023 plus the true exponent for double
precision.

4. The first bit of the mantissa is typically assumed to be 1,
yielding a full mantissa of 1.f, where f is the field of fraction
bits.

https://steve.hollasch.net/cgindex/coding/ieeefloat.html

https://steve.hollasch.net/cgindex/coding/ieeefloat.html

Convert 25.3 to single precision floating point binary (1)

▪ 25 = 11001

▪ 0.3 = 010011001100110011… 0 . 3 0

(0) . 6 0 0.5

(1) . 2 0 0.25

(0) . 4 0 0.125

(0) . 8 0 0.0625

(1) . 6 0 0.03125

(1) . 2 0 0.015625

(0) . 4 0 0.0078125

(0) . 8 0 0.00390625

This section will repeat

Convert 25.3 to single precision floating point binary (2)

25 = 11001

0.3 = 010011001100110011…

25.3 = 11001.010011001100110011

 = 1.10010100110011001100110 x 24

Normalised mantissa = 10010100110011001100110 (23 bits)

 Sign = 0

 Biased exponent = 127 + 4 = 131

 = 10000011

Single precision is: 0 10000011 10010100110011001100110

It’s not actually 25.3!

https://www.h-schmidt.net/FloatConverter/IEEE754.html

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floating point numbers

This representation however has limitations:

• Even with a 23 bit mantissa some numbers can appear the same

• We can extend to double precision (51 bit mantissa, 12 bit
exponent) but we can still have inaccuracies

• Adding very large to very small numbers can cause considerable
problems
• https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

• Care should be taken with comparisons

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Variable Selection

We aim to use the most suitable variable for the type of
number we are storing

The choice of variable has consequences both for overall
memory usage and speed of calculation

Integer mathematics is considerably faster than floating point
calculations.

Byte ordering (1)

In an ideal world, all machines would use the same byte size for
variables and would arrange the bytes in the same way

However… (as mentioned when we discussed binary files)

Byte ordering (2)

Different machines arrange the bytes used to make a numbers using
one of two ordering types

• Big endian – high order byte comes first
• Little endian – low byte comes first

So for a two byte integer
• Big Endian - High byte, low byte
• Little Endian - Low byte, high byte

• For more information: https://developer.ibm.com/articles/au-
endianc/

https://developer.ibm.com/articles/au-endianc/
https://developer.ibm.com/articles/au-endianc/

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: Software Engineering Best Practice
	Slide 3: The tools used for code development
	Slide 4: The practise of writing good code
	Slide 5: The Practise of Writing Good Code: Functions
	Slide 6: The Practise of Writing Good Code
	Slide 7: Example Pseudocode
	Slide 8: Best Practice – a guide
	Slide 9: The tools used for code development
	Slide 10: Debugging
	Slide 11: Debugging
	Slide 12: How not to debug!
	Slide 13: Debugging tools
	Slide 14: The tools used for code development
	Slide 15: Git Revisited
	Slide 16: Local git workflow
	Slide 17: Git workflow
	Slide 18: Useful git blogs
	Slide 19: Documenting
	Slide 20: Code IS documentation!
	Slide 21
	Slide 22: Code documentation
	Slide 23: Commenting Code
	Slide 24: Self-documenting code
	Slide 25: The best comment is perhaps
	Slide 26: Testing
	Slide 27: Use Assertions
	Slide 28: Unit Testing Library
	Slide 29: A few dates and times
	Slide 30: Appendix 1
	Slide 31: Code optimisation
	Slide 32: Speeding up Code
	Slide 33
	Slide 34
	Slide 35: Registers (1)
	Slide 36: Registers (2)
	Slide 37: Integers (1)
	Slide 38: Integers (2)
	Slide 39: Loop Jamming
	Slide 40
	Slide 41: But for large loops…
	Slide 42: Code Blocking
	Slide 43: An example (part 1)
	Slide 44: An example (part 2)
	Slide 45: An example (part 3)
	Slide 46: Loops
	Slide 47: Loops for(i=10; i>0; i-- ;){}
	Slide 48: Use switch instead of if (1)
	Slide 49: Use switch instead of if (2)
	Slide 50: Early loop breaking
	Slide 51: Loop breaking (1)
	Slide 52: Loop breaking (2)
	Slide 53: Some miscellaneous ones (1)
	Slide 54: Some miscellaneous ones (2)
	Slide 55: Some miscellaneous ones (3)
	Slide 56: It is quite easy
	Slide 57: And of course
	Slide 58: Lookup Tables – an example
	Slide 59: Consider the following case
	Slide 60: Comparison of Speed
	Slide 61: Appendix 2
	Slide 62: Numbers
	Slide 63: Numbers – byte sizes
	Slide 64: Numbers - range
	Slide 65: Numbers - limits
	Slide 66: Decimal numbers
	Slide 67: Fixed point numbers (1)
	Slide 68: Fixed point numbers (2)
	Slide 69: Fixed point numbers (3)
	Slide 70: Fixed point numbers (4)
	Slide 71: Fixed point numbers (5)
	Slide 72: Fixed Point Numbers (56.78125)
	Slide 73: Fixed Point Numbers - Example
	Slide 74: Fixed Point Numbers – Solution (1)
	Slide 75: Fixed Point Numbers – Solution (2)
	Slide 76: Fixed Point Numbers – Solution (3)
	Slide 77: Limitations of fixed point representation
	Slide 78: Scientific notation
	Slide 79: Floating Point Numbers
	Slide 80: Single and Double Precision Floating Point Numbers
	Slide 81: In summary
	Slide 82: Convert 25.3 to single precision floating point binary (1)
	Slide 83: Convert 25.3 to single precision floating point binary (2)
	Slide 84: It’s not actually 25.3!
	Slide 85: Floating point numbers
	Slide 86: Variable Selection
	Slide 87: Byte ordering (1)
	Slide 88: Byte ordering (2)

